Neural reinforcement learning for behaviour synthesis
نویسنده
چکیده
We present the results of a research aimed at improving the Q-learning method through the use of artificial neural networks. Neural implementations are interesting due to their generalisation ability. Two implementations are proposed: one with a competitive multilayer perceptron and the other with a self-organising map. Results obtained on a task of learning an obstacle avoidance behaviour for the mobile miniature robot Khepera show that this last implementation is very effective, learning more than 40 times faster than the basic Q-learning implementation. These neural implementations are also compared with several Q-learning enhancements, like the Q-learning with Hamming distance, Q-learning with statistical clustering and Dyna-Q.
منابع مشابه
Reinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملCooperation Learning for Behaviour-based Neural-fuzzy Controller in Robot Navigation
Based on the previously proposed extended neural-fuzzy network, this paper presents a cooperation scheme of training data based learning and reinforcement learning for constructing sensor-based behaviour modules in robot navigation. In order to solve reinforcement learning problem, a reinforcement-based neural-fuzzy control system (RNFCS) is provided, which consists of a neural-fuzzy controller...
متن کاملReinforcement Learning in a Neurally Controlled Robot Using Dopamine Modulated STDP
Recent work has shown that dopamine-modulated STDP can solve many of the issues associated with reinforcement learning, such as the distal reward problem. Spiking neural networks provide a useful technique in implementing reinforcement learning in an embodied context as they can deal with continuous parameter spaces and as such are better at generalizing the correct behaviour to perform in a gi...
متن کاملNeural mechanism for stochastic behaviour during a competitive game
Previous studies have shown that non-human primates can generate highly stochastic choice behaviour, especially when this is required during a competitive interaction with another agent. To understand the neural mechanism of such dynamic choice behaviour, we propose a biologically plausible model of decision making endowed with synaptic plasticity that follows a reward-dependent stochastic Hebb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Robotics and Autonomous Systems
دوره 22 شماره
صفحات -
تاریخ انتشار 1997